MOTION OF A RIGID STAMP ON THE BOUNDARY OF A VISCOELASTIC HALF-PLANE

PMM Vol. 32, No. 3, 1968, pp. 445-453

L.A. GALIN and A.A. SHMATKOVA
(Moscow)

(Received November 5, 1967)
The plane contact problem of motion of a rigid atamp at constant velocity over the boundary of a half-plane is investigated. The material filling the medium is sasumed isotropic and linearly viscoelastic. Such velocities of motion are considered for which it is impossible to neglect the influence of inertial forces. A numerical example is presented.

1. A number of contact problems for linear viscoelastic bodies has been investigated in [1 to 3], however, the influence of inertial forces was neglected. If the rate of stamp motion is of the order of the velocity of sound, then the influence of the inertial forces will be aignificant. The problem of a stamp moving over the boundary of an elastic half-plane has been considered by one of the anthors [4]. It should be noted that taking account of viscoalastic effects and inertial forces results in substantial complications in solving the problem.

We find an expreanion for the normal component of the displacement on the surface of a viscoelantic half-plane subjected to a concentrated force moving along it with the constant velocity w. We henceforth consider the concentrated force as the limiting case of preasure distributed in some interval.

As it turns out, particularly in [5], for the majority of viscoelastic bodies it can be assumed that the volume strain is purely clastic, and volume aftereffect can hence be neglected. Then the relationchips between the strain and stress components for the atate of plane strain will be
$\sigma_{x}-\frac{E(1-v)}{(1+v)(1-2 v)}\left[\varepsilon_{x}-\int_{-\infty}^{t} R(t-\tau) \varepsilon_{x} d \tau+\frac{v}{1-v} \varepsilon_{y}+\frac{1}{2} \int_{-\infty}^{t} R(t-\tau) \varepsilon_{y} d \tau\right]$
$\sigma_{v}=\frac{E(1-v)}{(1+v)(1-2 v)}\left[\frac{v}{1-v} \varepsilon_{x}+\frac{1}{2} \int_{-\infty}^{t} R(t-\tau) \varepsilon_{x} d \tau+\varepsilon_{y}-\int_{-\infty}^{t} R(t-\tau) \varepsilon_{y} d \tau\right]$

$$
\begin{equation*}
\tau_{x y}=\frac{E}{1+v}\left[\gamma_{x y}-\frac{3}{2} \frac{1-v}{1-2 v} \int_{-\infty}^{t} R(t-\tau) \gamma_{x y} d \tau\right] \tag{1.1}
\end{equation*}
$$

Henceforth, the case whan the kernel in the expressions in (1.1) is exponential

$$
\begin{equation*}
R(t-\tau)=m e^{-n(t-\tau) / t}, \quad m>0, \quad n>0 \tag{1.2}
\end{equation*}
$$

will be considered.
Let us introduce some characteriatic time t_{0}, and let $u s$ conaider media for which the
aftereffect is not very significmant, and therefore, the parameter $n_{1}=n / t_{0}$ is large. Let us utlize Equ.

$$
\begin{equation*}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x v}}{\partial y}=\rho \frac{\partial^{2} u}{\partial t^{2}} ; \quad \frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}=\rho \frac{\partial^{2} v}{\partial t^{2}} \tag{1.3}
\end{equation*}
$$

and the relationships

$$
\begin{equation*}
\varepsilon_{x}=\frac{\partial u}{\partial x}, \quad \varepsilon_{y}=\frac{\partial v}{\partial y}, \quad \Upsilon_{x y}=\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \tag{1.4}
\end{equation*}
$$

The boundary conditions of the problem ander consideration are

$$
\begin{gather*}
\tau_{x y}=0, \quad \sigma_{y}=-P \delta(x) \quad \text { for } \quad y=0,-\infty<x<\infty \tag{1.5}\\
\sigma_{x}, \sigma_{y}, \tau_{x y} \rightarrow 0 \quad \text { for } \quad\left(x^{2}+y^{2}\right)^{1 / x} \rightarrow \infty \tag{1.6}
\end{gather*}
$$

Here P is the magnitude of the concentrated forces, and $\delta(x)$ is the delta function.
2. We shall seek an elementary solution in the form

$$
\begin{gather*}
\sigma_{x}=e^{i \beta x} \varphi_{1}(\beta, y), \quad \varepsilon_{x}=e^{i \beta x} \varphi_{1}(\beta, y) \\
\sigma_{y}=e^{i \beta x} \psi_{2}(\beta, y), \quad \varepsilon_{y}=e^{i \beta x} \varphi_{2}(\beta, y), \quad u=e^{i \beta x} \omega_{1}(\beta, y) \tag{2.1}\\
\tau_{x y}=e^{i \beta x} \psi_{3}(\beta, y), \quad \gamma_{x y}=e^{i \beta x} \varphi_{3}(\beta, y), \quad v=e^{i \beta x} \omega_{2}(\beta, y)
\end{gather*}
$$

We shall take the real parts of the expressions obtainedin order to find the stress, atrain and diaplacement components.

Sabstituting (2.1) into (1.1), (1.3), (1.4), introducing dimensionless functions and coordinates, and transferring to a moving coordinate syatem, we obtain
$\boldsymbol{\psi}_{1}(\beta, y)=A \varphi_{1}(\beta, y)+B \varphi_{2}(\beta, y), \quad \psi_{2}(\beta, y)=B \varphi_{1}(\beta, y)+A \varphi_{2}(\beta, y)$.
$\psi_{3}(\beta, y)=C \varphi_{3}(\beta, y), \quad i \beta \psi_{1}(\beta, y)+\psi_{3}^{\prime}(\beta, y)+N \beta^{2} \omega_{1}(\beta, y)=0$
$\boldsymbol{\psi}_{2}{ }^{\prime}(\beta, y)+i \beta \psi_{3}(\beta, y)+N \beta^{2} \omega_{2}(\beta, y)=0, \quad \varphi_{1}(\beta, y)=i \beta_{1}(\beta, y)$
$\varphi_{2}(\beta, y)=\omega_{2}^{\prime}(\beta, y)$,
$\varphi_{3}(\beta, y)=1 / 2\left\lfloor\omega_{1}^{\prime}(\beta, y)+i \beta \omega_{2}(\beta, y)\right]$

Here

$$
\begin{gathered}
A=\frac{1-v}{(1+v)(1-2 v)}\left(1-m_{1} H\right), \quad B=\frac{v}{(1+v)(1-2 v)}\left(1+\frac{1-v}{v} \frac{m_{1}}{2} H\right) \\
C=\frac{1}{1+v}\left(1-\frac{3}{2} \frac{1-v}{1-2 v} m_{1} H\right), \quad H=\left[n_{1} x_{0} / w+i \beta\right]^{-1}, \quad N=\frac{\rho w^{2}}{E}, \quad m_{1}=\frac{m x_{0}}{w}
\end{gathered}
$$

where x_{0} is some provisional linear scale.
The syatem (2.2) can be reduced to one ordinary differential Eq.
Here $\quad C_{1} \psi_{2}^{1 \mathrm{~V}}(\beta, y)+C_{2} \psi_{2}{ }^{\prime \prime}(\beta, y)+C_{3} \psi_{2}(\beta, y)=0$

$$
\begin{gather*}
C_{1}=A C, \quad C_{2}=\beta^{2}\left(2 B C+2 B^{2}-2 A^{2}+N C+2 N A\right) \tag{2.3}\\
C_{8}=\beta^{4}\left(A C-N C-2 N A+2 N^{2}\right)
\end{gather*}
$$

Henceforth, all the functions in the relationshipa (2.2) will be expressed in terms of $\psi_{2}(\beta, y)$.

Taking into account the constraints imposed earlier on the kernel (1.2), we transform the coefficients of (2.3) by expanding them in terms of H, and neglecting terms containing H in powers higher than the first. The solution of (2.3) is

$$
\begin{equation*}
\psi_{2}(\beta, y)=\sum_{h=1}^{4} Q_{k} e^{\lambda_{h} y} \tag{2.4}
\end{equation*}
$$

Here the λ_{k} are roots of the characteristic equation, all distinct, and determined by the relationships

$$
\begin{align*}
& \lambda_{1}=-\lambda_{2}=\beta a_{1}\left(1+b_{1} H\right), \quad a_{1,2}=\left[\frac{ \pm\left(L_{2}^{2}-4 L_{4}\right)^{2 / 2}-L_{2}}{2}\right]^{1 / 2} \tag{2.5}\\
& \lambda_{3}=-\lambda_{4}=\beta a_{2}\left(1+b_{2} H\right) \\
& \quad b_{1,2}=\frac{1}{2}\left[\frac{\left(L_{2} L_{3}-2 L_{1} L_{4}-2 L_{5}\right)\left(L_{2}^{2}-4 L_{4}\right)^{-1 / 2} \mp L_{3}}{\left(L_{2}^{2}-4 L_{4}\right)^{1 / 2} \mp L_{2}}-L_{1}\right]
\end{align*}
$$

where

$$
\begin{gathered}
L_{1}=-m_{1} \frac{5-7 v}{2(1-2 v)}, \quad L_{4}=1-N \frac{(1+v)(3-4 v)}{1-v}+2 N^{2} \frac{(1+v)^{2}(1-2 v)}{1-v} \\
L_{2}=-2+N \frac{(1+v)(3-4 v)}{1-v}, \quad L_{3}=m_{1}\left[\frac{5-7 v}{1-2 v}-\frac{7}{2} N(1+v)\right] \\
L_{5}=m_{1}\left[-\frac{(5-7 v)(1+v)^{2}}{2(1-v)}+\frac{7}{2} N(1+v)\right]
\end{gathered}
$$

The first subscripts in the expressions for a and b correspond to the choice of the upper sign, and the second subscripts to the lower sign.

Utilizing the condition (1.6) at infinity, we arrive at the conclusion that only $\lambda_{k}>0$ should enter into the solution. An analysis of (2.5) permits the conclusion that under the assumptions made above the positive roots are λ_{1} and λ_{3}. On the basis of (2.4) we obtain
$\psi_{2}(\beta, y)=Q_{1} e^{-\beta a_{1} y}\left(1-\beta a_{1} b_{1} H y\right)+Q_{2} e^{-F a_{2} y}\left(1-\beta a_{2} b_{2} H y\right), y>0$
We seek the expression for σ_{y} in the following form:

$$
\sigma_{y}=\operatorname{Re} \int_{0}^{\infty} \psi_{2}(\beta, y) e^{i \beta x} d \beta
$$

The coefficients $Q_{j}(j=1,2)$ are found in such a manner that the boundary conditions (1.5) would be satisfied. Utilizing the second of them, we obtain

$$
\begin{equation*}
Q_{1}+Q_{2}=-\frac{p}{\pi E} \tag{2.7}
\end{equation*}
$$

We establish an expresaion for $\psi_{\mathrm{s}}(\beta, y)$ from the system (2.2):

$$
\begin{equation*}
\psi_{3}(\beta, y)=i C_{4}\left[\frac{C_{5}}{\beta} \psi_{2}{ }^{\prime}(\beta, y)+\frac{C_{6}}{\beta^{3}} \psi_{2}{ }^{\prime \prime \prime}(\beta, y)\right] \tag{2.8}
\end{equation*}
$$

where we have introduced the notation

$$
\begin{gathered}
C_{4}=C[(C-2 N)(A+B)(A-B-N)]^{-1} \\
C_{5}=A^{2}-B^{2}-2 N B-N A-N^{2}, \quad C_{6}=-N A
\end{gathered}
$$

The expression for $r_{x y}$ will be

$$
\tau_{x y}=\operatorname{Re} \int_{0}^{\infty} \psi_{s}(\beta, y) e^{i \beta x} d \beta
$$

Taking account of the relationship (2.6), we transform (2.8) to

$$
\begin{align*}
& \psi_{3}(\beta, y)=-i\left\{Q_{1} e^{-\beta a_{1} y}\left[r_{1}+H\left(r_{3}-r_{5} \beta y\right)\right]+\right. \\
& \quad+Q_{2} e^{-\beta a_{4} y}\left[r_{2}+H\left(r_{4}-r_{6} \beta y\right]\right\}, \quad y>0 \tag{2.9}
\end{align*}
$$

Here r_{1}, \ldots, r_{6} are constants independent of β and expressed thus

$$
\begin{aligned}
r_{1,2}= & a_{1,2} L_{8}\left(L_{8}+a_{1,}{ }_{2}^{2} L_{10}\right), \quad r_{5,6}=b_{1,2} r_{1,2} \\
r_{3,4}= & L_{7}\left(L_{8}+a_{1,2}^{2} L_{10}\right)+L_{6}\left(L_{9}+b_{1,2} L_{8}\right)+a_{1,{ }_{2}{ }_{2} L_{6}\left(L_{11}+3 b_{1,2} L_{10}\right)}^{L_{6}=} \begin{aligned}
1-3 N(1+v)+2 N^{2}(1+v)^{2}
\end{aligned} \quad L_{8}=\frac{1}{(1+v)^{2}(1-2 v)}-N \frac{1}{1-2 v}-N^{2} \\
& L_{7}=m_{1} \frac{(1+v)^{2}(1-v)\left[2(2-v)-3 N(1+v)(1-2 v)-4 N^{2}(1+v)^{3}\right]}{\left.2\left[1-3 N(1+v)+2 N^{2}(1+v)\right]^{2}\right]^{2}} \\
L_{9}= & m_{1} \frac{2-3 v+v^{2}}{(1+v)^{2}(1-2 v)^{2}}, \quad L_{10}=-N \frac{1-v}{(1+v)(1-2 v)}, \quad L_{11}=-m_{1} L_{10}
\end{aligned}
$$

It should be noted that in selecting the first subscript in the relationships for $r_{i}(i=1, \ldots, 6)$, it is necessary to atilize expressions for its components taken also with the first subscripts.

Using the first condition in (1.5), we obtain the missing relationship to determine the coefficients $Q_{j}(j=1,2)$

$$
\begin{equation*}
Q_{1}\left(r_{1}+H r_{3}\right)+Q_{2}\left(r_{2}+H r_{4}\right)=0 \tag{2.10}
\end{equation*}
$$

The system of Eqs, (2.7) and (2.10) yields

$$
\begin{equation*}
Q_{1,2}= \pm \frac{P}{\pi E} \frac{1}{r_{1}-r_{2}}\left(r_{2,1}+H \frac{r_{1} r_{4}-r_{2} r_{3}}{r_{1}-r_{2}}\right) \tag{2.11}
\end{equation*}
$$

Utilizing the system (2.2), let us consider the relationship governing the displacement of points of a viscoelastic half-plane in the y-direction.

$$
\begin{equation*}
\omega_{2}(\beta, y)=-\frac{1}{N \beta^{2}}\left[\psi_{2}^{\prime}(\beta, y)+i \beta \psi_{3}(\beta, y)\right] \tag{2.12}
\end{equation*}
$$

Then

$$
v=\operatorname{Re} \int_{0}^{\infty} \omega_{2}(\beta, y) e^{i \beta x} d \beta
$$

Let us transform this relationship by taking account of (2.6), (2.9) and (2.11)

$$
\begin{equation*}
v(x, y)=\int_{0}^{\infty}\left[S_{1}(\beta, y) \cos \beta x+S_{2}(\beta, y) \sin \beta x\right] d \beta \tag{2.13}
\end{equation*}
$$

Here

$$
\begin{aligned}
S_{1}(\beta, y)= & \frac{P}{\pi E} \frac{l_{0}}{\beta}\left\{e^{-\beta a_{4} y}\left[l_{1}+\frac{\xi_{0}}{\xi_{0}^{2}+\beta^{2}}\left(l_{2}+l_{3} \beta y\right)\right]-\right. \\
& -e^{-\beta a_{4} y}\left[l_{4}+\frac{\xi_{0}}{\xi_{0}^{2}+\beta^{2}}\left(l_{5}+l_{8} \beta y\right)\right\}
\end{aligned}
$$

$$
S_{2}(\beta, y)=\frac{P}{\pi E} l_{0}\left\{e^{-\beta a_{1} y} \frac{1}{\xi_{0}^{2}+\beta^{2}}\left(l_{2}+l_{3} \beta y\right)-e^{-\beta a_{2} y} \frac{1}{\xi_{0}^{2}+\beta^{2}}\left(l_{5}+l_{0} \beta y\right)\right\}
$$

where l_{00}, \ldots, l_{0} and ξ_{0} are constants independent of β and having the form:

$$
\begin{gathered}
l_{0}=\left[N\left(r_{1}-r_{2}\right)\right]^{-1}, \quad l_{2,5}=\frac{\left(a_{1,2}-r_{1,9}\right)\left(r_{1} r_{4}-r_{2} r_{3}\right)}{r_{1}-r_{2}}+r_{2,1}\left(a_{1,2} b_{1,2}-r_{3,4}\right) \\
l_{1,4}=r_{2,1}\left(a_{1,2}-r_{1,2}\right), \quad l_{3,8}=r_{2,1}\left(r_{5,8}-a_{1,2}^{2} b_{1,2}\right), \quad \xi_{0}=n_{1} x_{0} / w
\end{gathered}
$$

(the choice of subscripts is defined above).

Henceforth, we shall deal not with v itself, but with its derivative with respect to x; aince it is necessary to find the solution of the integral Eq.

$$
\int_{-1}^{1} K(x-\xi) P(\xi) d \xi=f(\xi)
$$

where the kernel $K(x)$ will be the Green's function of the problem considered above, and equals $[d v / d x]_{y=0}$, in order to find the atrese originating under the stamp. Hence

$$
\begin{gather*}
\frac{!d v}{d x}=\frac{I P}{\pi E} l_{0}\left[-\int_{0}^{\infty}\left(l_{1} e^{-\beta a_{1} y}-l_{4} e^{-\beta a_{3} y}\right) \sin \beta x d \beta-\right. \tag{2.14}\\
-\xi_{0} \int_{0}^{\infty}\left(l_{2} e^{-\beta a_{1} y}-l_{5} e^{-\beta a_{2} y}\right) \frac{\sin \beta x}{\xi_{0}{ }^{2}+\beta^{2}} d \beta-\xi_{0} y \int_{0}^{\infty}\left(l_{3} e^{-\beta a_{1} y}-l_{6} e^{-\beta a_{4} y}\right) \beta \frac{\sin \beta x}{\xi_{0}{ }^{2}+\beta^{2}} d \beta+ \\
\left.+\int_{0}^{\infty}\left(l_{2} e^{-\beta a_{1} y}-l_{5} e^{-\beta a_{2} y}\right) \beta \frac{\cos \beta x}{\xi_{0}{ }^{2}+\beta^{3}} d \beta+y \int_{0}^{\infty}\left(l_{3} e^{-\beta a_{1} y}-l_{6} e^{-\beta a_{4} y}\right) \beta^{2} \frac{\cos \beta x}{\xi_{0}{ }^{2}+\beta^{2}} d \beta\right]
\end{gather*}
$$

Let na make a more detailed investigation of the integrals in (2.14). It is easy to show that the firat integral in this expression is:

$$
\int_{0}^{\infty} e^{-a \beta y} \sin \beta x d \beta=\frac{x}{x^{2}+(a y)^{2}}
$$

while ovaluation of the second integral yields
$\xi_{0} \int_{0}^{\infty} e^{-a \beta y} \frac{\sin \beta x}{\xi_{0}{ }^{2}+\beta^{2}} d \beta=\frac{1}{2}\left[e^{-\xi_{x} x} \int_{-\infty}^{x} \frac{x e^{\xi_{2} x}}{x^{2}+(a y)^{2}} d x-e^{\xi_{0} x} \int_{-\infty}^{x} \frac{x e^{-\xi_{0} x}}{x^{2}+(a y)^{2}} d x\right]$
It is easy to show boundedness of the third integral in (2.14). Remarking that

$$
\int_{0}^{\infty} e^{-a 3 y} \frac{\beta \cos \beta x}{\xi_{0}^{2}+\beta^{2}} d \beta=\frac{d}{d x} \int_{0}^{\infty} e^{-a \beta y} \frac{\sin \beta x}{\xi_{0}^{2}+\beta^{2}} d \beta
$$

and utilising the relationuhip (2.15), wo obtain for the fourth intogral

$$
\int_{0}^{\infty} e^{-a \beta y} \frac{\xi \beta \cos \beta x}{\xi_{0}^{2}+\beta^{2}} d \beta=-\frac{1}{2}\left[e^{-\xi_{0} x} \int_{-\infty}^{x} \frac{x e^{\xi_{0} x}}{x^{2}+(a y)^{2}} d x+e^{\xi_{0} x} \int_{-\infty}^{x} \frac{x e^{-\xi_{0} x}}{x^{2}+(a y)^{2}} d x\right]
$$

Finally, the fifth and last integral can be represented as

$$
\int_{0}^{\infty} e^{-\alpha \beta \nu} \frac{\beta^{2} \cos \beta x}{\xi_{0}^{2}+\beta^{2}} d \beta=\int_{0}^{\infty} e^{-a \beta v} \cos \beta x d \beta-\xi_{0}^{2} \int_{0}^{\infty} e^{-a \beta y} \frac{\cos \beta x}{\xi_{0}^{2}+\beta^{2}} d \beta
$$

The first integral herein is

$$
\int_{0}^{\infty} e^{-a \beta_{y}} \cos \beta x d \beta=\frac{a y}{x^{2}+(a y)^{2}}
$$

It is not difficalt to prove the boundedness of the second integral in this relationship.
Performing a passage to the limit, and taking account of the boundedness of the integrals which are coefficients of y, we finally obtain

$$
\begin{equation*}
\frac{d v(x)}{d x}=\lim _{y \rightarrow 0} \frac{d v(x, y)}{d x}=\frac{P}{\pi E} l_{0}\left[\left(l_{4}-l_{3}\right) \frac{1}{x}+\left(l_{5}-l_{2}\right) e^{-\xi_{0} x} E i\left(\xi_{0} x\right)\right] \tag{2.16}
\end{equation*}
$$

Using the asymptotic representation of exponential integral functions $E i\left(\xi_{0} x\right)$ and expanding exp $\left(-\xi_{0} x\right)$ in power series, we obtain the following approximate expression for the kemel

$$
\begin{align*}
K(x)= & \frac{d v(x)}{d x}=\frac{p}{\pi E} l_{0}\left\{\left(l_{4}-l_{1}\right) \frac{1}{x}+\left(l_{5}-l_{2}\right)[\ln x+x \ln x+\right. \\
& \left.\left.+\left(C^{\circ}+\ln \xi_{0}\right)+x\left(C^{\circ}+\ln \xi_{0}+\xi_{0}\right)+o(x)\right]\right\} \tag{2.17}
\end{align*}
$$

where C° is the Euler constant.
3. The problem of determining the pressure which originates ander a rigid stamp moving
 at the constant velocity w over the boundary of a viscoelastic half-plane (Fig. 1) can be reduced to solving some singalar integral equation.

Let ns assume that the dimensions of the contact area are known, and there are no friction farces between the stamp and the viscoelastic half-plane. Then

$$
\begin{align*}
& \text { Fig. } 1 \\
& \qquad f(x)=\int_{-1}^{1} P(\xi)\left[\frac{A_{0}}{x-\xi}+A_{1} \ln |x-\xi|+A_{2}+\right. \\
& \left.+A_{3}(x-\xi)+A_{1}(x-\xi) \ln |x-\xi|+\cdots\right] d \xi \tag{3.1}
\end{align*}
$$

Here $P(\xi)$ is the pressure originating under the stamp; $x_{0}=a$, where $2 a$ is the size of the contact area; $f(x)=d f_{1}(x) / d x$, where $f_{1}(x)$ is the shape of the contacting surface

$$
\begin{gathered}
A_{0}=\pi^{-1} l_{0}\left(l_{4}-l_{1}\right), \quad A_{1}=\pi^{-1} l_{0}\left(l_{5}-l_{2}\right), \quad A_{2}=\pi^{-1} l_{0}\left(l_{5}-l_{2}\right) \times \\
\times\left(C^{\circ}+\ln \xi_{0}\right), \quad A_{3}=\pi^{-1} l_{0}\left(l_{5}-l_{2}\right)\left(C^{\circ}+\ln \xi_{0}+\xi_{0}\right)
\end{gathered}
$$

Eq. (3.1) can be written as follows:

$$
f(x)=\int_{-1}^{1} P(\xi)\left[\frac{A_{0}}{x-\xi}+A_{1} \ln |x-\xi|+K^{*}(x-\xi)\right] d \xi
$$

where the first member in the kemel of this integral equation is due to the elastic properties of the material, the second to the viscoelastic, and finally $K^{*}(x-\xi)$ is a regular
function, also dependent on the viscoelastic properties of the medium.
Let us seek an approximate solation of the integral equation obtained.
Let us consider the first approximation. We will have

$$
\begin{equation*}
f(x)=\int_{-1}^{1} P(\xi)\left[\frac{A_{0}}{x-\xi}+A_{1} \ln |x-\xi|\right] d \xi \tag{3.2}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\int_{-1}^{1} P(\xi) \ln |x-\xi| d \xi=\operatorname{Re}\left[\int_{-1}^{1} P(\xi) \ln (x-\xi) d \xi\right] \tag{3.3}
\end{equation*}
$$

Integrating by parts, we obtain

$$
\begin{aligned}
\int_{-1}^{1} P(\xi) \ln (x-\xi) d \xi & =i \pi \int_{-1}^{1} P(\xi) d \xi+\ln (1-x) \int_{-1}^{1} P(\xi) d \xi+ \\
& +\int_{-1}^{1}\left[\int_{-1}^{\xi} P(\xi) d \xi\right] \frac{d \xi}{x-\xi}
\end{aligned}
$$

Then (3.2) becomes

$$
\begin{equation*}
\int_{-1}^{1}\left[A_{0} P(\xi)+A_{1} \int_{-1}^{\xi} P(\xi) d \xi\right] \frac{d \xi}{x-\xi}=f(x)-A_{1} \ln (1-x) \int_{-1}^{1} P(\xi) d \xi \tag{3.4}
\end{equation*}
$$

Let us introduce the following notation:
$q(\xi)=A_{11} P(\xi)+A_{1} \int_{-1}^{\xi} P(\xi) d \xi, \quad F(x)=f(x)-A_{1} \ln (1-x) \int_{-1}^{1} P(\xi) d \xi$
We therefore arrive at a Carleman equation of the first kind

$$
\begin{equation*}
\int_{-1}^{1} q(\xi) \frac{d \xi}{x-\xi}=F(x) \tag{3.6}
\end{equation*}
$$

We seek the solution as some series

$$
\begin{equation*}
q(\xi)=\sum_{n=1}^{\infty} B_{n} \frac{T_{n}(\xi)}{\sqrt{1-\xi^{2}}}+\frac{B_{0}}{\sqrt{1-\xi^{2}}} \tag{3.7}
\end{equation*}
$$

Here $T_{n}(\xi)=\cos (n \arccos \xi)$ are Chebyshev polynomials. Let us substitute (3.7) into (3.6), and let as transform the integral

$$
\int_{-1}^{1} \frac{T_{n}(\xi)}{\sqrt{1-\xi^{2}}} \frac{d \xi}{\xi-x}=\pi \sqrt{\frac{1-T_{n}^{2}(x)}{1-x^{2}}}=\frac{\pi}{n} T_{n}^{\prime}(x)
$$

Let as assume the function $F(x)$ defined by (3.5), can be expanded in derivatives of the Chebyshev polynomials in the considered interval ($-1,1$):

$$
\begin{equation*}
F(x)=\sum_{n=1}^{\infty} \varepsilon_{n} T_{n}^{\prime}(x) \tag{3.8}
\end{equation*}
$$

We then arrive at a system of algebraic equations to determine the coefficients B_{n} :

$$
\sum_{n=1}^{\infty} \varepsilon_{n} T_{n}^{\prime}(x)=-\sum_{n=1}^{\infty} B_{n} \frac{\pi}{n} T_{n}^{\prime}(x)-B_{0} \int_{-1}^{1} \frac{1}{\sqrt{1-\xi^{2}}} \frac{d \xi}{\xi-x}, \quad T_{0}(x)=1
$$

Hence

$$
\begin{equation*}
B_{n}=-(n / \pi) \varepsilon_{n} \quad(n=1,2,3, \ldots) \tag{3.9}
\end{equation*}
$$

The constant B_{0} is determined from the condition that the pressure acting on the stamp equals a given value

$$
\begin{equation*}
\frac{P}{E}=\int_{-1}^{1} P(\xi) d \xi \tag{3.10}
\end{equation*}
$$

Let us now assume that

$$
\begin{equation*}
P(\xi)=r^{\prime}(\xi) \tag{3.11}
\end{equation*}
$$

Then, taking account of the relationship (3.5), we obtain

$$
\begin{equation*}
A_{0} r^{\prime}(\xi)+A_{1} r(\xi)=q(\xi) \tag{3.12}
\end{equation*}
$$

where $q(\xi)$ is a solution of (3.6). Hence

$$
\begin{equation*}
r(\xi)=\frac{1}{A_{0}} \exp \frac{-A_{1} \xi}{A_{0}} \int q(\xi) \exp \frac{A_{1} \xi}{A_{0}} d \xi \tag{3.13}
\end{equation*}
$$

where the arbitrary constant is determined from the relationship (3.4). Taking the above into account, we write the final expression for the contact stress as

$$
\begin{gather*}
P(\xi)=\frac{1}{A_{0}}\left[-\sum_{n=1}^{\infty} \frac{n}{\pi} \varepsilon_{n} \frac{T_{n}(\xi)}{\sqrt{1-\xi^{2}}}+\frac{B_{0}}{\sqrt{1-\xi^{2}}}\right]- \tag{3.14}\\
-\frac{A_{1}}{A_{0}{ }^{2}} \exp \frac{-A_{1} \xi}{A_{0}}\left[M+\int_{-1}^{\xi} \exp \frac{A_{1} \xi}{A_{0}}\left(-\sum_{n=1}^{\infty} \frac{n}{\pi} \varepsilon_{n} \frac{T_{n}(\xi)}{\sqrt{1-\xi^{2}}}+\frac{B_{0}}{\sqrt{1-\xi_{2}^{2}}}\right) d \xi\right]
\end{gather*}
$$

We obtain $M=0$ from the relationship (3.4). Utilizing condition (3.10), we find

$$
\begin{equation*}
B_{0}=\frac{1}{\pi I_{0}\left(-A_{1} / A_{0}\right)}\left\{A_{0} \frac{P}{E} \exp \frac{A_{1}}{A_{0}}+\sum_{n=1}^{\infty}(-1)^{n} n \varepsilon_{n} I_{n}\left(-\frac{A_{1}}{A_{0}}\right)\right\} \tag{3.15}
\end{equation*}
$$

Here $I_{n}(x)$ are Bessel functions of purely imaginary argument.
Let us examine the integrals in the relationship (3.14):

$$
\int_{-1}^{\zeta} \exp \frac{A_{1} \xi}{A_{0}} \frac{T_{n}(\xi)}{\sqrt{1-\xi^{2}}} d \xi
$$

By substitating $\theta=$ arccos ξ and also decomposing the exponential function into power series, these integrals can be reduced to integrals of the form

$$
\sum_{l_{1}=0}^{\infty} \frac{1}{k!}\left(\frac{A_{1}}{A_{0}}\right)^{k} \int_{\arccos \xi}^{\pi} \cos ^{h} \theta \cos n \theta d \theta
$$

for which recurnion relatione exdet.
Let iefind the second approximation for the solution of (3.1). We will have

$$
\begin{align*}
& f(x)=\int_{-1}^{1} P(\xi)\left[\frac{A_{0}}{x-\xi}+A_{1} \ln |x-\xi|+A_{2}+\right. \tag{3.16}\\
& \left.\quad+A_{3}(x-\xi)+A_{1}(x-\xi) \ln |x-\xi|\right] d \xi
\end{align*}
$$

Transforming (3.16) by the same method as for (3.2), we obtain

$$
\begin{equation*}
\int_{-1}^{1} q_{1}(\xi) \frac{d \xi}{x-\xi}=F_{1}(x) \tag{3.17}
\end{equation*}
$$

$$
\begin{aligned}
& F_{1}(x)=f(x)+C_{0}^{*} {\left[A_{1} \ln (1-x)+A_{2}-A_{3}(1-x)-A_{1}(1-x) \ln (1-x)\right]+} \\
&+C_{1}^{*}\left[A_{1}+A_{3}+A_{1} \ln (1-x)\right] \\
& C_{0}^{*}=\int_{-1}^{1} P(\xi) d \xi, \quad C_{1}^{*}=\int_{-1}^{1} \int_{-1}^{\xi} P(\xi) d \xi d \xi
\end{aligned}
$$

Sabsequent solutions are performed analogonsly to those presented above.
4. Let an coandider mexmple. Let a rigid stamp with flat rectilinear base of width $2 a$ move with conatant valoclty over the boundary of a viscoelastic half-plane. The halfplane material is polymethylmotacrylate.

In atudying the meohenical properties of polymethylmetacrylate at high loading rates it has been entablished [6] that the dependence

$$
\sigma=E \varepsilon+A \int_{-\infty}^{t} e^{-\frac{t-\tau}{\alpha}} \frac{d \varepsilon}{d \tau} d \tau
$$

can be uaed, where E, A and a chomen from the condition of beat agroement with oxperimeatal deta are: $E=8 \times 10^{10}$ dyne $/ \mathrm{cm}^{2}, A=14.5 \times 10^{11} \mathrm{dyne} / \mathrm{cm}^{2}, a=0.5 \times 10^{-6} \mathrm{sec}$.

It has also been indicated in [6] that volume creep is negligibly small for polymethylmetacrylate. The other conatanta are: Poisaon coofficient $\nu=0.36$; the denaity is $1.45 \mathrm{~g} / \mathrm{cm}^{2}$. We nasume the velocity of atamp motion to be $300 \mathrm{~m} / \mathrm{sec}$.

The diatribution of the presace originating under the stamp is ahown in Fig. 2.

BIBLIOGRAPHY

1. Hanter, S.C., The rolling contact of a rigid cylinder with a viacoelantic hali-apace. J. Appl. Mech., Vol. 28, No. 4, 1961.
2. Morland, L.W., A plane problem of a rolling contact in linear viscoelasticity theory. J. Appl. Mech. Vol. 29, No. 2, 1962.
3. Ivenova, R.Ia., Rolling of a viscoclastic cylinder on abase of the same material. PMTF, No. 3, 1964.
4. Galin, L.A., Contact Problems of Elasticity Theory, Moscow, Gostekhizdat, 1953.
5. Rabotmov, Iu.N., Equilibrium of an elastic medium with aftereffect. $P M M, V o l .12$, No. 1, 1948.
6. Kolaky, H., Investigation of the mechanical properties of materials at high loading rates. Mekhanika, Collection of Translations, No. 4, 1950.

Translated by M.D.F.

