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The plane contact problem of motion of a rigid stamp at constant velocity over the bound-
ary of a half-plane is investigated. The material filling the medium is assumed isotropic
and linearly viscoelastic. Such velocities of motion are considered for which it is impos-
sible to neglect the influence of inertial forces. A numerical example is presented.

1. A number of contact problems for linear viscoelastic bodies has been investigated
in [1 to 3], however, the influence of inertial forces was neglected. If the rate of stamp
motion is of the order of the velocity of sound, then the influence of the inertial forces will
be significant. The problem of a stamp moving over the boundary of an elastic half-plane
has been considered by one of the authors [4]. It should be noted that taking account of
viscoelastic effects and inertial forces results in substantial complications in solving the
problem,

We find an expression for the normal component of the displacement on the surface of
a viscoelastic half-plane subjected to a concentrated force moving along it with the
constant velocity w. We henceforth consider the concentrated force as the limiting case of
pressure distributed in some interval.

As it turns out, particularly in [5], for the majority of viscoelastic bodies it can be
assumed that the volume strain is purely elastic, and volume aftereffect can hence be ne-
glected. Then the relationships between the strain and stress components for the state of
plane strain will be
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Henceforth, the case when the kemel in the expressions in (1.1) is exponential
R(t—rt)=ment- m>0, n>0 (1.2)

will be considered.
Let us introduce some characteristic time &,, and let us consider media for which the

446



Motion of a rigid stamp on the boundary of a viscoelastic Aalf-plane 447

aftereffoct is not very significant, and therefore, the parameter n; = n/1, is large. Let us
utilize Equ.

ilm o, Dy Ta_,m (1.3)
and the relationships
w=gw s e () (14
The boundary conditions of the problem under consideration are
Ty =0, 6,=—P8(T) for y=0, —c0o <20 (1.5)
021 Oy Ty =0 for (499> 00 (1.6}

Here P is the magnitade of the concentrated forces, and 8 (x) is the delta function.

2. We shall seek an elementary solation in the form
o =e®*P1 (B, ), .= (B, 9)
oy =¥y (B, y), & =P (B,y), u=e*u (B, y) 2.1y
Toy = €P P (B, 9), Ty =5 (B, ), v =60y (B, y)

We shall take the real parts of the expressions obtained in order to find the stress,

strain and displacement components.
Sabstituting (2.1} into (1.1}, (1.3), {1.4), introducing dimensionless functions and

coordinates, and transferring to & moving coordinate system, we obtain

Y1 (B, ¥) = A9, B, ¥) +Be, (B, ¥), v B, ¥) = Ber B, ¥) + 4o, B, ¥)-
s B, ¥) = Cos (B, 1), B By ») +9:" B y) + NP, B, y) =0
Y’ B, y) + by B, y) + NP, B, y) =0, o, (B, y) = ifo, B, )
9 B ¥) =0 B v, es (B,y)="; [0y B. ¥) + o, B, ¥)] (2.2)

Here
A=mryammU—mi  B=gramm (1 T )
C=rr (1= ispml), H=Imspw+BIY, N=5 m="0

where x; is some provisional linear scale.
The system (2.2) can be reduced to one ordinary differential Eq.
Covs B, ¥) +Cabs” B, ) +Caby (B, ) =0 (2.3)

Here
C, = AC, C, = p* 2BC + 2B — 24* + NC + 2NA),
Cy= B* (AC — NC — 2NA + 2N?)

Henceforth, all the functions in the relationships (2.2) will be expressed in terms of

d’: (B v 7).
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Taking into account the constraints imposed earlier on the kemel (1.2), we tranaform
the coefficients of (2.3) by expanding them in terms of H, and neglecting terms containing
H in powers higher than the first, The solution of (2.3) is

s By y)= D) Querwv (2.4)
h=1

Here the A, are roots of the characteristic equation, all distinct, and determined by
the relationships

— 4LV 1T
Ay = — 7»2 = Ba1(1 + b1H), Q3,9 = [i'- (L* 4214) Lz] (2.5)
Ay =—A = Baz(i + b,H)
1 [ (LaLy —2L,L4— 2Ls) (Lo® — 4Le)™"* F Ls I ]
— i1

Le = T (L’ — 4Ly F Ly
where
. 5—Tv . (14+v)(3—4v 149211 —2
L1~—m1m, L4—1—N———1_\)—)+2N2—(—%-}Q
1 3—4 —
LN T =

5—Tv) (1 2 7
Ly=my | — Co T 4 2 N (1 4 v)]

The first subscripts in the expressions for a and b correspond to the choice of the
upper sign, and the second subscripts to the lower sign.

Utilizing the condition (1.6) at infinity, we arrive at the conclusion that only A, > 0
should enter into the solution. An analysis of (2.5) permits the conclusion that under the
assumptions made above the positive roots are A, and A,. On the basis of (2.4) we obtain

Y, B, y) = Qe (1 — Pab Hy) + Qv (1 — Bab,Hy), y >0 (2.6)

We seek the expression for oy in the following form:

5, = Re [, (B, y) eis=dp

The coefficients Q: (j = 1, 2) are found in such a manner that the boundary conditions
(1.5) would be sallshec{ Utilizing the second of them, we obtain

Q1+ Qz——L 2.7)

We establish an expression for iy (3, y) from the system (2.2):
$a(B,¥) = iC0 [ W' B, "9 (2.8)
where we have introduced the notation
C,=CI[(C —2N) (A +B)(A —B — N)|?
C, =A% — B* — 2NB—NA — N?, (C¢= — NA

The expression for fxy will be
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Tey = Re { 93 (B, y)ett=dp

Taking account of the relationship (2.6), we transform (2.8) to

Vs (B, ¥) = — i {Qre P [ry + H (rs — rsBy)] +
+ QqePo [r, 4 H (rg— reByl}, y>0 (2.9

Here r;, ..., 75 are constants independent of 3 and expressed thus

T = 1,3 L (Ls + ay,%L40), Tse = big s
T34 =L (Ls + 6,2 Lyo) + Lo (L + by 0Le) + 012 Lg (Lyy + 3by 4 Lyy)
(14 —2v) _ 1 1
Le = —3N (4% FeNT(1T v LF‘”‘(14—1»)2(1—2\’)'“"\’1-—2\:”’1“72
Ly = m, QW (=92 ——3N (1 +) (1 —2v) —4N* (1 + )]
= 2 —3N (T +v) + 2N (T + v
. 2—3v 4t _ 1—vw .
Ls—-—“m1w‘—mv Ly = — Nm, Ly = —myly,

It should be noted that in selecting the first subscript in the relationships for
r;(i=1, ..., 6), it is necessary to utilize expressions for its components taken alao with
the first sabscripts,

Using the first condition in (1.5), we obtain the missing relationship to determine the
coefficients Qi (j=1,2)

Q (rn +Hr) 4+ Q(ry +Hr) =0 (2.10)
The system of Eqgs, (2.7) and (2.10) yields
P 1 -
Gt (et HEER) e

Utilizing the system (2.2), let us consider the relationship governing the displacement
of points of a viscoelastic half-plane in the y-direction.

. 03 (B, 9) = — g by’ (3, 9) + Ba (B, )] (2.12)

o«
V= ReSmg(B, y)efxdf
0
Let us transform this relationship by taking account of (2.6), (2.9) and (2.11)

v(2,9) = {1518, y)cos Bz -+ 5, (B, y) sin B B (2.13)

Here
P I
S:1(B, y) = iE ?{e'e‘“"’ {zz -+ E’;‘i‘%‘ﬁ? (6 + lsBy)] —
— eRewy {l4 + ﬁQBg (6 + lsBy)}
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518, 9) =g b [ o+ fy) — o Ll 1)

where Iy, ..., [ and f. are constants independent of B and having the form:

b= N(ri—ral, Iy = D= OO ) 4y g by — 1)

11,4 = rz,l(al,z — "1,2), ls,a =ry1(rs6— af,zbl,z)s Eo= nyxy fw
(the choice of subscripts is defined above).

Henceforth, we shall deal not with v itself, but with its derivative with respect to x;
since it is necessary to find the solution of the integral Eq.

&K(x_‘—g)P(E,)dg =f(&)

where the kemel K (x) will be the Green’s fanction of the problem considered above, and
equals [dv/ dx]y = o» in order to find the stress originating under the stamp. Hence

'y 1P

o Py, [_ S(lle'ﬁ‘ty—-l‘e-ﬂaﬂ)sin Bz dB — (2.14)
0

— goag (lze‘ﬂam—— lse~3at'“) Eiilf;z dB — §oy S (l3e-5a1y _ l.e'ﬁaw) B ;:[f:gz dB +

+ S(lae-palu — lyefan) B E:fff;ﬁ B4y S' (Lge—Baww — [gg=Banv) B2 003_3’52 dB ]

Let us make a more detailed investigation of the integrals in (2.14). It is easy to show
that the first integral in this expression is:

o]

(eomsinpods = =2

0

while evaluation of the second integral yields

g—ab smBz N T ( zes ¢
g"S = LES Ml _S R e S x’—{-(ay)zdz] (2.15)

It is easy to show boundedness of the third integral in (2.14). Remarking that

o0 o0

ay BecosBz .0 —apy _Sib Bz
§ravio’+B’dB_ é‘e Uﬁo"f’BsdB
and utilising the relationship (2.15), we obtain for the fourth integral
8 chosBz — e oo
§e—°" e L 1 e S e+ S 7]

Finally, the fifth and last integral can be represented as
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T Broospz 2 (" -apy 0SBz
§¢—-an dp = Se—ﬂﬁVcosBde — & gr v Eus_i_ﬂrdp
i

[+o]
e eosPrdB = -
§ - (ay)*

It is not difficalt to prove the boundedness of the second integral in this relationship.
Performing a passage to the limit, and taking account of the boundedness of the lategrals

which are coefficients of y, we finally obtain
dv (x . dv{z, y) P 1 ) .
() _ lim o) _ Py, [(14 — I) o (Is— L) e tE (§0x)} (2.16)
Using the asymptotic representation of exponential integral functions Ei ( &2 and
expanding exp (~& ) in power series, we obtain the following approximate expression for
the kemel

dv (z)

K (z)=

= igho{li—1) 5+ — ) Inz +zlnz+
+(C°+InBy) +2(C° + In& + &) + 0 (21} (2.47)

where C°is the Euler constant,

3. The problem of determining the pressure which originates under a rigid stamp moving
at the constant velocity w over the boundary of a visco-
elastic half-plane (Fig. 1) can be reduced to solving
some singular integral equation.

Let us assume that the dimensions of the contact
area are known, and there are no friction forces be-
tween the stamp and the viscoelastic half-plane. Then

7 X
Fig. 1 1
440 .
f@=§ P |2 + dilnje—E|+ 4, +

-1

+ A=+ Ase—BIn|z—E + - | (3.1)

Here P {£) is the pressure originating under the stamp; x, = a, where 2a is the size
of the contact area; f{x) = df, (x)/dx, where f, (x) is the shape of the contacting surface

Ay =2t 1y Iy — ), Ay = a7y (I — 1), Ay =at (s — L) X
X (C° +1n§), Ay =a5(l; — L) (€C° - In & + &0

Eq. (3.1) can be written as follows:

f@) = PO [+ Aiin|z— |+ K* (e — b)) a
—1

where the first member in the kemel of this integral equation is due to the elastic proper-
ties of the material, the second to the viscoelastic, and finally K* (x — £) is a regnlar
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function, also dependent on the viscoelastic properties of the medium.
Let us seek an approximate solation of the integral equation obtained.
Let us consider the firat approximation. We will have

f@= [ P® 72+ ailnje—t]| a2 (3.2)
-1
It is easy to see that
SP(E)lnlx-—ﬁldE,:BeUP(g)ln(z—g)dg] (3.3)
% 2
Integrating by parts, we obtain

1 1 1
SP(g)ln(z—E)dE,:in S P(§)d§+ln(1——x)S P&+

1

+ [i PEaE] L

—1

Then (3.2) becomes

1

(@) + 4, § PE)E| ;2 = f(2)— 4 In(1 —2) j P(&dE (3.4)

~1

Let us introduce the following notation:

qE)= AP )+ 4, S P(E)dE, F(z)=f(z)— A;In(1 — x) 5‘ P(&)dE
-1 -1 (3.5)
We therefore arrive at a Carleman equation of the first kind

| 7(8) ;5 = F ) (3.6)

-1

We seek the solution as some series

20

Ty (%) 0 .
@) = 3 Bl + B (3.7)

Here T, (£) = cos (n arccos &) are Chebyshev polynomials. Let us substitute (3.7)
into (3.6), and let us transform the integral

T, (%) dt, 1 —Tp(x) oy
Vql?grz:“l/——i_"xz =5 1@
-1

n=1

Let us assume the function F () defined by (3.5), can be expanded in derivatives of
the Chebyshev polynomials in the considered interval (~1, 1):
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F(I) = 2 eal’y’ (z) (38)

n=y1

We then arrive at a system of algebraic equations to determine the coefficients B :

o oo 1
Yeln (@) =— N By 20, (@)—By { B To)=1
= ,,Z{ TR _511/1—&"‘ E—z o
Hence
By = —(n/n)e, (n==1,2,3,..) (3.9)

The constant B, is determined from the condition that the pressure acting on the stamp
equals a given value

1
P
= S P(E)dg (3.10)
-1
Let us now assume that
P (&) =1 (¥ (3.11)
Then, taking account of the relationship (3.5), we obtain
Ao (§) +A4,r () = ¢ (8) (3.12)
where g (£) is a solution of {3.6). Hence
1 — A
r(8) = 4 exp 2:5 Sq (8) exp Af—fdi (3.13)

where the arbitrary constant is determined from the relationship (3.4). Taking the above
into account, we write the final expression for the contact stress as

_A N, Tal® By ,
p(g)_“’—[“é?a” viee tyise) (319)

0

g
A — A& Ty s w\ n Ty () By
Ap? exp Ao [AI + ;S:exP Ao ( ZJ ER Yi—e: + Vi—z ) dg}

==}

We obtain ¥ =0 from the relationship (3.4), Utilizing condition (3.10), we find

1 { P A bt A
e e = 2L S 1y» 1 .
Bo= s gy A %P 4+ ) (1) neal, (— ;g)} (3.15)
N}
Here I (x) are Bessel functions of purely imaginary argument.
Let us examine the integrals in the relationship (3.14):
( oxp A _Tn(®)
S exp — Vit dg
—1

By substituting § = arccos £ and also decomposing the exponential function into power
series, these integrals can be reduced to integrals of the form
Foe) b4

Z—%—(%)k S cos* Bcos nBdo

L=0 arccos &
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for which recursion relations exist.
Let us find the second approximation for the solution of (3.1). We will have

(3.16)

r £ Y ’- ‘: 1 Ao

1 L V@ = [ P@ [+ Anle—El+ 4, +
1 L = -1

1 1
| i / +4s(e—B+ A (e —Bln|z—E]dE

: T ~_ / E Transforming (3.16) by the same method as for (3.2),
! Loowe obtain

— T -

! £ S 91 (8) zfg = Fy(z) (3.17)
Vi -05 2 25 ! —1

Z

§ fP(&)dgdg

-1 —1

Fig. 2 £
:(8) = AP @ + 41 [ PE)EE+ 4,

Fi(x)=f(z)+ Co*[4yIn(1—z) + A, — As(1—z)— A (1—2)In(1 — 2)]+
+C* (414 454+ A, In(1 —z))

co= [ P@an oo { §P<§>d§d§
—1

-1 -1
Subsequent solutions are performed analogously to those presented above,

4. Let us consider an example. Let a rigid stamp with flat rectilinear base of width
2a move with constant velocity over the boundary of a viscoelastic half-plane, The half-
plane material is polymethylmetacrylate.

In studying the mechanical properties of polymethylmetacrylate at high loading rates
it has been established {6] that the dependence

t t—t
s=Be+A (e = %ar
dt
o
can be used, where E, A and & chosen from the condition of best agreement with experi-
mental data are: E =8 x 1010 dyne/cm?, 4 = 14.5 x 1011 dyne/cm?, a = 0.5 x 10~ sec.

It has also been indicated in [6] that volume creep is negligibly small for polymethyl-
metacrylate. The other constants are: Poisson coefficient v/ = 0.36; the density is 1.45g/cm?.
We assume the velocity of stamp motion to be 300 m/sec.

The distribution of the pressure originating under the stamp is shown in Fig. 2.
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