
MOTION OF A RIGID STAMP ON THE BOUNDARY OF A 
VKXOELASTIC HALF-PLANE 

PMM Vol. 32, No. 3, 1968, pp. 445453 

LA. CALIN and AA. SHMATKOVA 
(Moscow) 

(Received November 5, 1967) 

The plane contact problem of motion of a rigid stamp at conmtant velocity over the bocnd- 
ary of a half-plane im investigated. The material filling the medium ia assumed imotropic 
and linearly viecoelamtic. Sach velocities of motion are considered for which it in impoa- 
l ible to neglect the influence of inertial forcem. A nnmerical example ia premented. 

1. A number of contact problema for linear viacoelamtic bodies ham been investigated 
in (1 to 31, however, the inflaence of inertial force0 was neglected. If the rate of atamp 
motion ia of the order of the velodty of moand, then the influence of the inertial forces will 
be mignificant. The problem of a atamp moving over the boandary of an elastic half-plane 
has been considered by one of the aathora [4]. It should be noted that taking account of 
viacoelamtic effecta and inertial force0 remults in substantial complicationa in molvlng the 
problem. 

We find an expremmion for the normal component of the dieplacement on t!~e surface of 
a viacoelamtic half-plane aobjected to a concentrated force moving along it with the 
constant velocity w. We henceforth condder the concentrated force ae the limiting case of 
presmare dimtriboted in some interval. 

Aa it tamm oat, particularly in [s], for the majority of viacoelastic bodies it can be 
ammomed that the volume atrain ia purely elastic, and volume aftereffect can hence be ne- 
glected. Then the relation&ips between the strain and stren~ components for the otate of 
plane strain will be 
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Henceforth, the came when the kernel in the expremsioao in (1.1) is exponential 

R (t - z) = mL*-n (t-+)/C 9 m>Q, n>O (i-2) 
will be conmidemd. 

Let urn introduce moms characterimtic time b, and let am connider media for which the 
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aftereffect im not very aignificaat, and therefore, the parameter aI = n/k, is large, Let as 
ntili%e Eqa. 

and the relationshipa 

The boundary conditions of the problem under consideration are 

Txu=O, 6,=--A(z) for y=o, -oo<x<oo 

a,, oy, zm + 0 for (2” + &‘* -9 00 

(1.5) 

(1.Q 

Here P ia the magnitude of the conceatratsd forcea, and 8 (2) is the delta fraction. 

2. We &all reek an elementary aolation in the form 

(5% = @x9, (P, Y), ex = el@Vt (IA Y) 

ay = @% (P, 9), eu = eiB% (S, Y), u = e’@at (8, 3) (2.1) 

rxy = @-%I (P, y), rxtr = es@98 (B, y), u = eiBW (P, 9) 

We &all take the real parts of the expressions obtainedin order to find the stress, 
strain and displacemant components. 

Sobduting (2.1) into (l.lt, (1.31, (1.41, intmdncing dimensionleas fanctiona and 
cocrdinatea, and transferring to a moving coordinate system, we obtain 

where ~0 in some providonal linear wale. 
The qmtem (2.2) caa be redaced to one ordinary differential Eq. 

Here Gg’,y (B, !/I + C&2” VJ v br) t G?h (B, Y) = 0 

C, = AC, C, = fi’ (2BC + 2B” - 2A* +NC + WA), 

C,= p’ (AC - NC - 2lVA -+ 2P) 

Henceforth, all the fanctfws in the relationships (2.2) will be expresaad in tanas of 
$2 (BP Y). 
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Taking into account the constraints imposed earlier on the kernel (1.2). we transform 
the coefficients of (2.3) by expanding them in terms of H, and neglecting terms containing 
H in powers higher than the first. The solution of (2.3) is 

Here the & are roots of the characteristic equation, all distinct, and determined by 
the relationships 

Al = - ia = I%(1 + W), ‘12 a, 2 = f (Lz--4L4)“‘-Lz 
( 

I a 1 (2.5) 

h3 = -h, = paz (1 + b,H) 
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Lb = ml - (5 - 7v) (f + v)x + 
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The first subscripts in the expressions for a and b correspond to the choice of the 
upper sign, and the second subscripts to the lower sign. 

Utilizing the condition (1.6) at infinity, we arrive at the conclusion that only Ak > 0 
should enter into the solution. An analysis of (2.5) permits the conclusion that under the 
assumptions made above the positive roots are & and A,. On the basis of (2.4) we obtain 

q,z (B, Y) = QlcBalu (1 - B&&d + Q@a2V (1 - B4Ny), Y > 0 P.(3) 
We seek the expression for UY in the following fan: 

The coefficients Q= (i = 1, 2) are found in such a manner that the boundary conditions 
(1.5) would be satisfie d . Utilizing the second of them, we obtain 

91-t Qa=-$ (2.7) 

We establish an expression for I/J, (@, y) from the system (2.2): 

where we have introduced the notation 

c, =c [(C-2N) (A +B)(A -B-N)]-’ 

C, = A2 - Ba - 2NB - NA - Na, C,=-NA 

(2.8) 

The expression for r 
XY 

will be 
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0 

Taking account of the relationship (2.6), we transform (2.8) to 

49 @V Y) =--iQre-8a1"[rl+N(r3-T5PY)I+ 
+ Qz~paauI~~+~(~~-~sP~lrr y>o (2.9) 

Here r,, . . . . re are constants independent of fl and expressed thus 

~5i.2 = al,, L6 VA -I- al,22kJr rs,i? = 61.2 r1.2 

,r8,4 = L7 G + aA LJ + L (LB + b% + aC2 L6 (-%I + 3bl.2 LJ 

L6 = 
(If vfz (1 - 2Y) 

1 - 3N (1 + Y) + 2N” (1 + v)z ’ La = (I+ $0 - 2v) - Iv 11% 
-- 

Iv2 

L7 = ml 
(I + Y)” (I- v) 12 (2 - v) - 3N (1 + v) (I- 2v) - 4Na (i + v)z] 

2 [I - 3N (1 + v) + 2Na (1 + v)J2]” 

It should be noted that in selecting the first subscript in the relationships for 
ri (i = 1, . . . . 6), it is necessary to utilize expressions for its components taken also with 
the first sobscripts. 

Using the first condition in (1.5), we obtain the missing relationship to determine the 
coefffaients Qj (j t 1, 2) 

QI (r~ + Hr8) + Q2 (“2 d- HG) = 0 

The system of Eqs. (2.7) and (2.10) yields 

(2.10) 

(2.11) 

Utilizing the system (2.2). let ns consider tbe relationship governing the displacement 
of points of a viscoelastie half-plane in the y-direction. 

Then 
(2.12) 

Let us transform this relationship by taking account of (2.6), (2.9) and (2.11) 

~0s Ps -t- 4 (I4 3) sin bl@ (2.13) 
0 

Here 
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where 1,. . ..) 1, and to are conmtantm independent of @ and having the form: 

lo = [N (h- rz)l-‘, 123 = (al,,- h72) hrc- V8) 

r1-r?, + h,l(~l,2~1,2 - b,*) 

h,. = r2,1(a1,2 - r1,2), k3,6 = r2,1 (h,8 - d,2h,2)r EO = n1xOlw 

(the choice of l obmcripta is defined above). 
Heacefotth, we mhall deal not with u itself, but with its derivative with respect to z; 

mince it is necemmary to find the solution of the integral Eq. 
1 

s 
K(?-E)ww~ = f(E) 

-1 

where the kernel K (x) will be the Creen’a fanction of the problem considered above, and 
equals b/dx,ly _ o, in order to find the etreea originating under the stamp. Hence 

(2.14) 

Let aa make a more detailed investigation of the integrals in (2.14). It is easy to show 
that the 5mt integral in this expreamion is: 

while evaloation of the second inregml yisldm 

i-l x 

dx - eEe+ 
-_ 

0 s 

se-El” 

_ 29 + (aYla 
dx (2.15) 

I 

II io euy to ahow boandednems of the third integral in (2.14). Remarking that 

and atflising the relationship (2.15). we obtain for the fourth integral 

Finally, the fifth and lamt integral cm be repremented am 
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The first integral huein is 

al 

s e-@U cos f3x dp = a?l 
X2 + w)” 

0 

It is not difficult to prove the boandednesa of the second integral in this reiationahfp. 
Performing a passage to the limit, and taking account of ths boundedness of the inteflals 

which are coefficients of y, we finally obtafn 

dvIz)= 
dX 

lim dv (x, Y) 
w-0 dx =fIo [(I*-Z,)$ + (is- tz) e-EsEi (&)] (2.46) 

Using the asymptotic representation of exponential integral functions& ( fox) and 
expanding exp (-fox) in power series, we obtain the following ‘approximate expression far 
the kernel 

K (5) -‘i L!gi = -$Zo{(Z4---Z1) Q +(Z5- Z,)[lns fxlnx + 

+ (C” + In Eo) + 2 (Co + In EO + $0) + 0 WI} (2.17) 

where Co is the Euler constant. 

3. The problem of determining the presssre which originates ander a r&id stamp moving 
at the constsnt velocity to over the boundary of a visco- 
elastic half-plane (Pig. 1) can be rsdnced to solving 
some singalar integral eqnation. 

Let a~ assnme that the dimusions of the contact 
area are knows, and there are no friction forces bu 
tween the stamp and the viscoelastic half-plane. Then 

Here P (5‘) is the pressure originating nndu the stamp; x0 = o, where 20 is the size 
of the contact area; f(x) = dfi (x)/dx, wiaere fi (d is the shape of the contacting sarface 

A, = n-l 1, (2, - ZJ, A, = n-l&) (I, - I,), A, = n-l lo (15 - I,) x 

X (Co -/- In Eo), A3 = 2-c-l IO (I, - I?) (Co -j- In to + fo) 

Eq. (3.1) can be written as follows: 

f(@= j P(E) [~+A’ln~x-~l++*(“--)]~S 
-1 

where the first member in the kernel of this integral equation is due to the elaotfc proper- 
ties of the materfsl, the oecond to the viscoelastic, nnd finally 1y* (x - 5) is s regalu 
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function, also dependent on the viscoelastic properties of the medium. 
Let us meek an approximate solation of the integral equation obtained. 
Let ns conaider the firat approximation. We wiIl have 

It ie easy to see that 

(3.2) 

(3.3) 

Integrating by parts, we obtain 

I 1 1 s qwq- WE= in s P(&E+In(l--) s P(E)dt+ 
-1 -1 -1 

Then (3.2) becomes 

Let oe introduce the following notation: 

~(8 = AP(E) + 4 5 J’(E)& 
1 

F (2) = f (z) - -1, In (1 - E) s P(WE 
-1 -1 (3.5) 

We therefore arrive at a Carleman eqaation of the first kind 

s Q (3 -J& == F(cr) ( 3.6) 
-1 

We seek the solution as some series 

(3.7) 

Here T, (I$) = COB (n arccos e) are Chebyshev polynomials. Let us substitute (3.7) 
into (3.6), and let us transform the integral 

Let oa assume the function F (r) defined by (3.5), can be expanded in derivatives of 

the Chebyshev polynomiala in the conaidersd interval (-1, 1): 
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F(s) = -g &,11,‘(X) (34 
*=I 

We then arrive at a system of algebraic equations to determine the coefficients B,: 

Hence 

3, = - (n/~) E, (fi = 1, 2, 3, * * .f w-0 
The constant Be is deters&&d from the condition that the pressure acting on the stamp 

equals a given value 

-= l P(%)d% 
P 
E s 

-1 
(3.10) 

Let us now assume that 

p (E) = r’ (%) 

Thea, taking account of the relationship (3.51, we obtain 

Aor’ (%I +A, ?‘ (%) = 9 (%I 

where q (6) is a solution of f3.6);Hence 

(3.11) 

(3.12) 

r(%)=&ew *S,(5) exp A*d% (3.13) 

where the arbitrary constant is determined from the relationship (3.4). Taking the above 
into account, we write the final expression for the contact stress as 

(3.14) 

We obtain iw = 0 from the relationship (3.4). Utilizing condition (3.10). we find 

Be = 
i 

nl;,(_Al,Ao) (Al +P -$- + i (--l)“FJ* ( - $)} (3.15) 

?a=1 

Here In (x1 are Bessel fanctions of purely imaginary argument. 
Let as examine the integrals in the relationship (3.14): 

E 

s exPA, ~~,_S!E 
AlE Tfi d% 

--I 

By snbstftoting 8 = arccos ?$ and also decomposing the exponential fnnction into power 
series, these integrals caa he reduced to integrals of the form 

arccos E 
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for wbiah remmion mlatlona edet. 
Let us find the l econd l pproldmation for the oolation of (3.11. We will have 

(3.16) 

+A,(s-_)+Al(s-_)lnIs- El]dE 
Transforming (3.16) by the oame method aa for (3.8, 

we obtJn 

~~(~)=f(~)+~~+[A~~n(l-~)+A~-~~,(1-~)-~~(1-~)ln(l-~)]-~ 

+&*[A1 + AS + Alln(l--z)] 

4. Let urn caaaider u example. Let a rigid stamp with flat rectilinear baae of width 
2a move with conetmt velocity over the boundary of a viacoelastic half-plane. The half- 
plane material 1m polymethylmetacrylate. 

In l tadying the q eohanfcal properties of polymethylmetacrylate at high loadin,g ratem 
it hae been emtabllmhed (61 that the depsndencc 

t t-s -- 
a EdT 

can be need, whae E, A and achoun from the condition of beat agreement with experi- 
mental data uet E I 8 x lO*O dyne/&, A - 14.5 x 10” dyne/au’, a = 0.5 x 10-o sec. 

It ham alao been indicated in [6] that volume creep im negligibly amall for polymethyl- 
metacrylate. The other conatantm are: Poison coefficient Y - 0.36; the density ia 1.45g/cmS. 
We neaame the velocity of mtamo motion to be 300 m/aec. 

1. 

2. 

3. 

The diotrfbatfon if the preimare originating onder the rrtamp in ahown in Fig. 2. 
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